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Abstract. The dynamics in a system of impurity centres with a two-fold orbitally degenerate 
electronic state strongly coupled to the appropriate crystalline vibrations are investigated. 
The interaction between impurities occurs via the same phonons as participate in the 
electron-phonon coupling. A novel type of motion is shown to appear in the system owing 
to the interdependent reorientations of the centres between their energetically equivalent 
nuclear configurations. The influence of the interacting impurities on the elastic properties 
of the crystal is discussed. 

1. Introduction 

Of the different types of impurity centre a special class is formed by impurities with 
degenerate electronicstates which possess some specific features due to the Jahn-Teller 
effect (JTE) (Englman 1972, Bersuker and Polinger 1989). The theoretical aspects of the 
situation with different types of single Jahn-Teller (JT) ion were discussed thoroughly. 
On the other hand the cooperative phenomena in crystals in which JT ions form regular 
sublattices and strongly interact between themselves have also been investigated rather 
well (Gehring and Gehring 1975). Much less attention has been paid to the cases which 
are in between these two cases, i.e. when the concentration of the impurities is high 
enough that the IT ions cannot be treated as single ions but on the other hand it is low 
enough that it is possible to consider the interaction of the given centre with only one 
nearest JT impurity as the strongest effect. By the term ‘interaction’ hereafter, we shall 
meantheinteractionvia thevibrationsofthe hostcrystalsince theimpuritiesareassumed 
to be separated by several lattice cells. In fact the degeneracy of the electronic states of 
the impurity indicates the presence of several energetically equivalent distributions of 
localizedelectronic cloud and, consequently, owing to the electron-phmon interaction, 
of several energetically equivalent nuclear configurations of the surrounding lattice. 
Hence, reorientation of the system between these configurations can occur (figure 1). 
This reorientation at a single centre induces a wave of lattice deformations around the 
impurity which can affect the reorientation of the other JT centre, and vice versa. So the 
centres have to reorient interdependently, and this new type of motion in the system 
results in a novel energy spectrum of localized vibronic states. This intercentre inter- 
action will be called the angular interaction. There isanother possibility for interimpurity 
interaction. The coupling of the electronic state of the impurity with the non-totally 
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Figure 1. Schematic illustration of impurity centreS in degenerate electronic States taking 
into account their interaction with the near-neighbour c~stallineenvironment. (For simpli- 
city, the cross-section of the simple cubic lattice is presented.) The full and broken rhombi 
correspond to the deformationsofthe impuritycentresalongdifferent tetrahedral axes (the 
localization of impurity centres in different energetically equivalent minima of the adiabatic 
potential). The reorientations of Lhe impurity centres between the equivalent nuclear con- 
figurations, resulting in the angular interaction between the centres, are shown by mows. 

symmetric crystalline vibrations deforms the surrounding lattice and thus induces min- 
ima on the surface of the adiabatic potential. This means that the nuclei of the crystal are 
displaced from their lattice points. their frequencies being changed. These displacements 
induce the appropriate deformation in the nearest surroundings of the other centre. 
Hence in this case also the distortions at both centres occur interdependently. This type 
of interaction between the centres (we shall call it the radial interaction) forms a new 
density of crystalline vibrations. The reorientational motion can be considered as slow 
compared with all the other vibrational degrees of freedom in the impurity crystal. 
This enables one to separate the angular and radial interactions within the adiabatic 
approximation. 

Thus, if an experiment which deals with localized states is discussed, one has to take 
into account the angular interaction between the JT ions first of all. When the data on 
the density of phonon states or on the fields of strains induced by the impurities are of 
interest, the radial interaction should be considered. 

In the present paper we discuss the influence of the IT impurities on the elastic 
properties of thc crystals (EPR, infrared and Raman spectra, and magneticsusceptibility 
will be considered in forthcoming papers). The softening of the crystal (the reduction in 
someelasticmoduli) isdue to the abilityof thesystem to reorient between the equivalent 
configurations. This means that the elasticity of the crystal with respect to the external 
deformations of appropriate symmetry (corresponding to the elasticity with respect to 
energetically equivalent distortions of the impurity surroundings) is reduced. Experi- 
mentally the effect of softening has been reported to have been observed in a GaAs 
crystal doped with Cu (Averkiev, Ashirov, Gutkin, Osipov and Sedov 1986). When the 
concentration of the impurities increases. the interaction between them increases too 
and the reorientational dynamics of the interacting centres become complicated to a 
large degree. This can affect essentially the appropriate elasticity coefficients. In the 
present work the influence of the intercentre interaction on the softening of the crystal 
due to the impurity centres with twofold orbitally degenerate electronic states in the 
case of strong vibronic coupling is discussed. The dependences of the elasticity modulus 
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on the interimpurity distances, as well as on the temperature and the external strain are 
obtained. 

2. Non-interacting impurities 

In this section we discuss the influence of the IT impurities on the elastic properties of 
crystals in the case of small impurity concentrations when one can neglect the interaction 
between the JT centres. For a centre in the twofold orbitally degenerate electronic 
state interacting with an E-type vibration of the immediate neighbours and strain the 
Hamiltonian has the form (Bersuker and Polinger 1989) 

H = HU + H v i b  + Heldcf (1) 

where 

The Hamiltonian (2) is written within the approximation of the linear vibronic Hvib and 
electron-strain H,,,,i, couplings. Ha is the Hamiltonian describing the E-type harmonic 
vibrations of the immediate neighbours, QE, Peing-their symmetrized displacements. 
V E  is the constant of linear vibronic interaction, CFy are the electronic matrices in 
the basis of the electronic E states q= of the impunty (Bersuker and Polinger 1989) 
(e,, = ux and C _= wY, where U= and U, are the Pauli matrices). b is the constant of 
the electron-strain interaction, .sy are symmetrized combinations of the components 
eii of the strain tensor, transforming after the row y of the irreducible representation 
E of the point symmetry of the impurity centre ( E ~  = e,, - (e, + e,)/& E,  = (e,  - euy) 
' d 3 / 2 ) .  In the case of strong linear vibronic coupling under consideration the splitting 
of the degenerate electronic state by the vibronic interaction is large enough to restrict 
the consideration by the low sheet of the adiabatic potential of the system, the latter 
being obtained as a result of the diagonalization of the Hamiltonian Ha + HviD. The 
operator S transforming the Hamiltonian to its diagonal form is as follows: 

(3) 

where q? = tan-'(QE,/QE,). In thiscasethe adiabaticelectronicfunctioncorresponding 
to this lower sheet is of the form 

q a d  = (1/~)[exP(- iq/2)yt , ( r )  - ~ X P ( M / ~ ) V - ( ~ ) I .  (4) 

Here ris the electronic variable. When the deformations are not too strong (bey EJT) 
the electron-strain interactioncan beconsideredin the frame ofthe perturbation theory, 
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neglecting the mixing of the different sheets of the adiabatic potential. For the states of 
the lower sheet in the first-order perturbation theory, one has 
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- 
HS,,in = ( ~ l ~ d  lHsuvn I Y l a d )  = -WEB COS p. + sin Q,). ( 5 )  

Thus the final Hamiltonian of the system has the following form: 

H =  -(F 1 ~ / 2 ) ( a ? / a p ~ )  + (fi2/2p')~; + h : p 2  - v E p  - b 

x ( E ~  cos Q, + E, sin p.). (6)  
In equation (6) the wavefunction is replaced in accordance with the relations 
Y = Q/VZ?p = (Qz, + Q:,)l" and L, = - ia /ap .  

In the absence of external strain the adiabatic potential of the system is known to 
possess an equipotential continuum of minima (the trough) along variable Q,, and the 
energy spectrum is a superposition of the spectrum of harmonic vibrations along p near 
the new equilibrium positions po = I VE I/w: and of the spectrum of rotations along the 
angular variable Q, with half-integer quantum numbersof the angular momentum [p = 
i t ,  22, . . ..The external strain cannot affect the vibrations alongp but it deforms the 

trough, and consequently the vibronic states of the rotational spectrum are split. If the 
external strain is strong enough, the system can be localized near the minima that 
corresponds to the distorted nudear configuration. 

Thechangein theelasticitymodulusof thecrystal induced by thevibroniccouplingof 
the impurity electrons with the crystalline vibrations can be written as follows (Leibfried 
1955): 

A(Cli - CO) =3(e2F/aE2,) (7) 
where Fis the contribution of the impurity centre to the free energy of the crystal F = 
E - kTln 2;  2 is a statistical sum over the vibronic states of the centre. To simplify (7) 
the strain is assumed to be applied along the (100) direction only; E, = 0, E~ # 0. (Note 
that along the (111) direction E$ = €6 = 0, and A(Cil - Ci2) = 0.) 

The ground twofold degenerate vibronic rotational state I, = +t is split by the 
external strain of above type into two singlet states separated by the energy gap be6. The 
contribution of these states to the free energy is of the form 

F =  -kTln[exp(-bce/2kT) + exp(b~,/2kT)] (8) 

hC A(CI1 - C11) = - ~ ( b ' / k T ) [ l / c o ~ h ' ( b ~ , / 2 k T ) ] .  (9) 

where E,, is the energy of the ground vibronic state. Then we have 

Hence if only the ground vibronic state is taken into account, the temperature depen- 
dence of the alteration of the elasticity modulus (if no external strain is present; E = 0) 
follows the Curie-Weiss relation A C  r l / k T .  The excited vibronicstates are split by the 
externalstrain toasmalldegreecomparedwiththegroundstate becauseofthereduction 
in the  electron-strain interaction. Indeed, the arbitrary perturbation V,,,, (having tetra- 
gonal symmetry) of the electronic subsystem of the impurity within the strong-coupling 
approximation has the form V,,,, = cos q. As can be easily seen, the matrix element of 
V,,,, calculated with the wavefunctions of the nth vibronic level differs from zero in the 
case of the ground rotational state 1, = ib only. Thus, the splitting of the excited states 
with 1, # 21 occur owing to the small admixture of the state with t, -+ 1 by the external 
strain and hence the contribution of these states to the change in the elasticity modulus 
is rather small. 
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The strain- and temperature-dependent function AC(&,, T )  is plotted in figure 2. 
This function (9) determines the change in the local elastic properties of the crystal near 
the JT impurity and, in turn, AC depends on the splitting of the vibronic levels by the 
externalstrainand theirtemperatureoccupation. Asseenfromfigure2,foranyarbitrary 
magnitude # 0 the value AC- 0 for T -  0 or T-  m. The zero temperatures are 
equivalent to a large splitting of the degenerate ground state due to the strain, which 
quenches the change in the elasticity modulus. Indeed, this change becomes zero 
(AC(e6) + 0) as the strain is increased and AC(E, = 0) = ACmaX. For a system with a 
non-degenerate electronic energy spectrum the change in the elasticity modulus can be 
shown to have a magnitude A C a  exp(-AE/kT), where AE is the gap in the energy 
spectrum. 

3. The interacting impurities 

In this section the vibrational interimpurity interaction and its influence on the effect of 
reducing the elasticity modulus of the crystal is discussed. If the concentration of 
impurities is not high, one can restrict the consideration of the intercentre interactions 
by coupling each centre with the equivalent nearest neighbour only. (The final result 
can be averaged over the interimpurity distances.) In the strong-coupling limit under 
consideration the electrostatic interaction can be shown to result in the redetermination 
of the effective constant of the interaction via vibrations. 

One can write the Hamiltonian of the system in the form 

H = C H(i) + H,,, (10) 
i = 1 . 2  

where H(i)  is the Hamiltonian of the single IT centre (11, i are the coupling centres and 
Hi,, describes the interaction between the centres: 

Htm = C KrrrvQry(1)Qrv(2). (11) 
rYri 

Here KrYrF is the effective constant of the intercentre interaction which mixes the 
symmetrized local vibrations (the vibrations of the nearest surrounding) Q,,(l) and 
Q,,Q) of centres 1 and 2, respectively. We restrict our consideration to the case when 
the ground electronic states of each interacting impurity is twofold orbitally degenerate. 
It can be shown (Bersuker et a1 1990) that in the case under consideration with the IT 
centres in the E states with strong vibronic coupling with local vibrations of the E type 
the maximum contribution to the interaction is caused by the E vibrations, i.e. the terms 
in (11) with r = E, y being equal to 7. The contribution of the vibrations of the 
other symmetry r # E to the energy of the coupled centres is proportional to 
E E K E r r I / u :  Q E,, since for thedistant impurities K E y r y / w :  Q 1. Using theadiabatic 
electronic basis and diagonalizing the vibronic Hamiltonian Hvlb (2) one can obtain for 
the lower sheet of the adiabatic potential 

- VE I: pi + K P ~ P ,  COS(ZE) - 2 6 ~ 6  cosxcos 5. (12) 
i=1.2 

Here K = KhyE, ,  5 = (q l  - q 2 ) / 2 ,  x = (q l  + q2) /2 .  The Hamiltonian (12) is written 
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FlgureZ.(n)ThechangeAC = A(C,$ - C,,)in theelasticitymodulusversus the temperature 
and the external strain along (100) in the case of non-interacting impurities. N is the con- 
centration of the impurity centres. ( b )  The cross section of the surface Ac(E, T )  along 
external strain E .  (c) The cross section of the surface Ac(E, T )  along external temperature 
T. 
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8nE/ h W. 

Figure 3. Vibronic energy spectrum of WO inter- 
acting impurity centres versus the constant K of 
the intercentre interaction (theeigenvalues of the 
Hamiltonian (13) with b = 0). The totalspectrum 
is formed by two motions that are in-phase and 
counterphase common reorientations of two 
centres. Each of the multipletsof levels with labels 
(2, b, c, d,. . . forms the ribronic spectrum of in- 
phase common rotation of the two-centre system 
(along x)  with quantum numbers 1, = 0. ?I, 
5 2 , .  . .. These multiplets are separated by the 

0 2 1 B * 10 12 energy gaps of the hindered counterphase 
rotation (along 5'). n = €&oE, 4n' K/o: 

for the case when the external strain is along the direction (100). The adiabaticelectronic 
function corresponding to equation (3) is of the form of the product of the two one- 
centre wavefunctions (4) localized at different sites. 

As seen from (12). for the case K Q w: and b&,/h Q wE there are two types of 
motion in the system: motion along the angular degrees of freedom E and x induced 
by the reorientation of the nuclear configuration, and motion along the radial 
variables p,, corresponding to the vibrations near the new equilibrium positions 
pa = P I ' )  = VE/(c& - K/2) at the bottom of the minima with the depth EIT = VEpa. 
These two types of motion induce the two types of interimpurity interaction mentioned 
in section 1, i.e. angular and radial interactions, respectively. The angular motion 
describing the collective reorientation of the distortions of E type around the  centres 
and possessing a momentum of inertia given by I = 4pS (12) is slow compared with the 
vibrations along the p, degrees of freedom and hence these two types of motion can be 
separated within the adiabatic approximation (Born and I<un 1954). In this case the 
energy spectrum of the total system is the superposition of the vibrational (with a gap of 
the order of hw) and the angular spectra. 

The Hamiltonian of the slow subsystem (near the equilibrium positions pa of the fast 
subsystem) is of the form 

(13) 
In the absence of the external strain ( b  = 0) the variable ,y is cyclic, i.e. in the space of 
the variables E and x the surface of the potential energy of the interacting impurities 
possesses a one-dimensional trough along x. The motion along the trough corresponds 
to the in-phase reorientation in the same direction as the local E-type distortions at each 
impurity centre. Depending on the values of the constant of the intercentre interaction 
K the motion along 5 describing the counterphase rotation of the local distortions can 
be changed from the free rotation ( K - t  0) to the harmonic vibration near the bottom 
of the appropriate minimum of the potential energy ( K  3~ w:).  The spectrum of the 
eigenvalues of the Hamiltonian (13) with = 0, which describes the angular interaction 
between the JT centres, is plotted in figure 3 (Bersuker et a/ 1990). The singlet ground 

H ( E , x )  = (hz/4pi)(L2: + L i )  - K p ;  C O S ( ~ E )  - 266, C O S ~ C O S E .  
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state is the specific feature of the vibronic spectrum of the interacting impurities. This is 
because the spectrum of the collective rotations along the trough of the adiabatic 
potential is classified by an integer quantum number of the angular momentum I, = 0, 
21, k2,.  . . (unlike the single-centre case) so that the singlet level with Ix = 0 cor- 
responds to the ground state, 

From (13), the electron-strain interaction deforms the trough and mixes rotational 
states with quantum numbers lx which differ by unity. However, with the exception of 
some particular points (intersection points), such states (see figure 3) are always sep- 
arated by large energy gaps of the rotational spectrum which results in comparatively 
small mixing. The strain-dependent function A C ( q ,  T )  in figure 4 wasobtained numeri- 
cally as a result of the diagonalization of the matrix of the electron-strain interaction 
(13) in the basis of the lowest vibronic states of the system, represented in figure 3. The 
intercentre interaction is seen to affect considerably the magnitude of the effect of 
softening and its dependence on strain. First of all the value of the initial softening 
AC(Q = 0) that essentially results from the non-degenerate ground state of the two- 
centre system is reduced. The strain-dependent function AC(&*) possesses a minimum 
the positionofwhichmoves (and itsdepth decreases) asthe constant Kofthe intercentre 
interaction is increased. On the whole the effect of the intercentre interaction is that it 
reduces the softening of the crystal. 
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4. Discussion 

As follows from the arguments given above, the ground state of the system of interacting 
impurity centres is a singlet that corresponds to the freezing of the motion along the 
trough of the adiabatic potential in both JT centres. Therefore the interimpurity inter- 
action resultsinamore rigidlatticecompared withacrystal with thesamenon-interacting 
centres (in degenerate electronic states). 

The magnitude of this effect is convenient to estimate via the ratio of the energy E,, 
of the intercentre interaction to the IT energy E,, of  the single centre (where E,,, is the 
change in the ground-state energy of two JT centres due to the elastic coupling between 
them): E,,,/E,, = K / ( &  - K/2). Taking into account that w: = X a,(Ey)’wt, where 
a,(E.j) is Van Vleck’s (1939) coefficient that transforms after the representation r = E 
( y  are its rows) of the point group symmetry of the impurity centre. The sum is 
taken over all the values of the wavevector and the branches of the crystalline normal 
vibrations, w, being their frequencies. An equivalent expression can be written for the 
constant K of the interaction between the impurities sited at points 1 and 2 
K = = 2 a,(lEy)a: ( 2 E y ) w f ,  where Van Vleck’s coefficients are localized to sites 
1 and 2. Using the explicit form of these coefficients a(nry) = O r  , I  exp(iKR,J, where 
Ory ,x  ,is a matrix element of the orthogonal transformation diagonahzing the dynamical 
matrix of the crystal, R, the position of the n-site (for the form of a,(nry), for some 
particular cases see Stevens (1969) and Steggles (1977)), and integrating with respect to 
K, one can obtain within the Debye approximation K/w:  = Sx-’[cosx ( 6 r 2  - 1) + 
3 sin x (1 - W 2 ) x - ’ ] ,  x = kDRlz with kD is the value of the Debye wavevector and R,’ 
is the interimpurity separation. In the case of the GaAs crystal with a given value of kD 
and the lattice constant ao, one can estimate the interaction energy as follows: E,,, = 
0.O3EIT provided that the impurities are at the distance of two lattice constants from 
eachother (impurity concentrationabout 10%). For the GaAs : Cusystem with relatively 
weak JT coupling the value of the IT distortion is assumed to be pa = 0.1 8, and, taking 
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Figure& (o)Thechange AC = A(C,, - C,,)in theelasticitymodulusversus the temperature 
and the external strain along (100) in the case of the interacting impurities. N is the con- 
centration of the impurity centres. ( b )  A cross section of the surface AC(sO. T )  along the 
line T = constant (with the arbitrary value of K ) .  (c) The dependence of the minimum value 
of hCm," on the magnitude of the constant K of the intercentre interaction. 
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AC.. kT/Nb' 

Figure 5. A plot of AC as a function 01 the inter- 
centredistance(asanexamp1c thecase E&WE = 
5 is used). 

Flgure6.Thedepcndenceoftheoonstant Kof the 
intercentre interaction on the distance between 
theimpuritycentres. onis the latticeconstant. 

the electron-strain constant b = 3.15 eV (Averkiev er al1986), we have E,", = 8 cm-l. 
In the case of a crystal with a Debye temperature To of about 300 K for impurities with 
strong JT coupling (EJT = 2 x lo3 cm-l), the energy of the intercentre interaction is of 
the order of 60 cm-'. 

The results of the calculations of AC(R12) are plotted in figure 5. The oscillations of 
AC(RI2) are due to the alternation of the sign of the elastic interaction between the 
impurities as a function of the intercentre distances RI1. Note that the elements of the 
dynamical matrix m:m of the crystal binding different sites n and m of the lattice can be 
both positive and negative (figure 6).  We obtain the following estimation: AC(RI2 = 
2ao)/AC(K = 0) = 0.12, i.e. the change in the elasticity modulus due to the intercentre 
interactionisabout 12% ofthe magnitudeoftheeffect ofsofteningofthecrystalinduced 
by impurities in the twofold degenerate electronic states. 
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